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(57) ABSTRACT

Petroleum Analytics Learning Machine (or PALM) system
is a machine learning based, “brutally empirical” analysis
system for use in all upstream and midstream oil and gas
operations. PALM system optimizes exploration, production
and gathering from at least one well of oil and natural gas
fields to maximize production while minimizing costs. Nor-
malized data are processed to determine clusters of corre-
lation in multi-dimensional space to identify a machine
learned ranking of importance weights for each attribute.
Predictive and prescriptive optimization on the normalized
data is performed utilizing unique combinations of machine
learning and statistical algorithm ensembles. The unstruc-
tured textual data are classified to correlate with optimal
production to capture the dynamics of at least one or more
wells of oil and natural gas fields and to provide categori-
zation results from labeled data sets to identify patterns.
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Fig. 2
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MAP ETC. (1270)
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Fig. 4
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PETROLEUM ANALYTICS LEARNING
MACHINE SYSTEM WITH MACHINE
LEARNING ANALYTICS APPLICATIONS
FOR UPSTREAM AND MIDSTREAM OIL
AND GAS INDUSTRY

RELATED APPLICATION

[0001] The present application claims a priority to U.S.
Provisional Patent Application Serial no. 62/350,663 filed
Jun. 15, 2016, which is incorporated herein by reference in
its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to a petroleum ana-
Iytics learning machine system and method to maximize
production from wells of oil and natural gas fields while
minimizing costs.

OBIJECT AND ASUMMARY OF THE
INVENTION

[0003] The Petroleum Analytics Learning Machine
(PALM) is a machine learning based, “brutally empirical”
analysis system for use in all upstream and midstream oil
and gas operations. The Petroleum Analytics Learning
Machine™ is a trademark of applicant. The objective of the
PALM is to become the go-to ‘brain’ of oil and gas explo-
ration and production, including drilling, completion, and
pipeline gathering operations. The PALM was reduced to
practice primarily in the new unconventional shale oil and
gas play. The PALM analyzed more than 100 attributes
integrated from all available data referenced above, in more
than 150 horizontal wells and more than 2000 hydraulic
fracture (frac) stages that were drilled since 2012 in the wet
gas region of the Target Layer shale of Pennsylvania. The
PALM was also validated in more than 3000 shale oil wells
with more than 10,000 hydraulic fracture stages in the
Permian Basin of Texas. In accordance with an exemplary
embodiment of the claimed invention. The PALM comprises
Machine Analytics Products™ (MAP) Application subsys-
tems (subsystems) that are big-data-centric, using computa-
tional machine learning predictive and prescriptive analysis
techniques to maximize production of hydrocarbons while
minimizing costs of oil and gas upstream exploration and
production (E&P) and midstream pipeline operations.

[0004] In accordance with an exemplary embodiment of
the claimed invention, the PALM comprises MAP subsys-
tems for geology, geophysics, reservoir modeling and rock
physics, MAPGEORES; drilling, MAPDRILL; hydraulic
fracturing and completions, MAPFRAC; production of
hydrocarbons including oil and other liquid condensates,
natural gas, and water, MAPPROD); and gathering pipelines
and compressor stations, MAPGATHER. In accordance
with an aspect of the claimed invention, PALM further
comprises other MAP subsystems, such as portfolio man-
agement, MAPPORTFOLIO; and others subsystems specifi-
cally developed for a customer and the like. These subsys-
tems use the PALM System Integration Database (SID) to
retrieve integrated data, then perform machine learning and
other statistical analyses of that data, and return to the SID
results of computation and predictive and prescriptive
actions that can be forwarded by the TOTALVU user inter-
face (UI) to controllers, human and/or automated, so that
real-time optimization of production and minimization of
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costs can be realized for new wells. The unique PALM
product suite was developed by inventing scientists and
engineers with more than 80 years of combined energy
industry expertise, working alongside big data scientists
experienced in building real-time decision and control sys-
tems. The PALM predictive and prescriptive technologies
utilize Support Vector Machine learning, time-series shape
recognition, and real-time Random Forest and decision trees
to steer hydraulic fractures to become more likely high
instead of low producers, stage by stage, as completions of
horizontal and vertical shale wells progress. The PALM also
uses Support Vector Regression, logistic regression, Bayes-
ian models, nearest neighbors, neural networks and deep
learning networks uniquely combined as ensemble learning
to weigh the importance of hundreds to thousands of geo-
logical, geophysical, and engineering attributes, both mea-
sured in the field and computed from theoretical analyses
such as reservoir simulation models and 4D seismic and
gravity gradiometry monitoring of production changes over
time.

[0005] In accordance with an exemplary embodiment of
the claimed invention, a system and method for optimizing
exploration, production and gathering from at least one well
to all wells of oil and natural gas fields using a Petroleum
Analytics Learning Machine system to maximize production
while minimizing costs is provided. Structured digital data
and unstructured textual data from geological, geophysical,
reservoir modeling simulation, drilling, hydraulic fracturing
and completion, and production of crude oil, natural gas,
ethane, butane, propane and condensates are collected.
Incoming data over a communications network are received
and stored into a system integration database by a processor-
based server or cloud-based distribution of servers to pro-
vide collected data for analyses. The incoming data com-
prises digital exogenous data, real-time and historical
endogenous data, historical data from surrounding produc-
tion wells, hydraulic fracture completion data, and progress,
status and maintenance data from new vertical and horizon-
tal wells, including kickoffs, sidetracks, step-outs, pipeline
gathering systems, compressor stations and other kinds of
oil and gas sensor data including from public and private
data sources now existent and of future design. The time and
depth for each data point of the collected data are recorded.
The collected data are ‘cleaned’ to eliminate extraneous and
noisy data. The cleaned data are normalized and stored. The
normalized data are processed to determine clusters of
correlation in multi-dimensional space to identify a machine
learned ranking of Importance Weights for each attribute.
The Importance Weights are convolved with specific well
weights to identifying patterns to enhance production of at
least one well or all wells of oil and natural gas fields.

[0006] In accordance with an exemplary embodiment of
the claimed invention, predictive and prescriptive optimiza-
tion are performed on the normalized data utilizing unique
combinations of machine learning and statistical algorithm
ensembles. The ensembles include at least two of the fol-
lowing: linear and non-linear support vector machines and
regressions, naive Bayes, logistic regression, decision trees,
hidden Markov models, random forests, gradient boosting
machines, neural networks, deep learning networks, among
other machine learning models

[0007] In accordance with an exemplary embodiment of
the claimed invention, unstructured textual data are classi-
fied to correlate with optimal production by utilizing pro-
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gressive clustering using region growing from learned seeds,
information extraction and retrieval, image recognition, tex-
tual mining, keyword and key phrase extraction, semantic
and sentiment analysis, entity and pattern recognition and
knowledge discovery processing to capture the dynamics of
said at least one or all wells of oil and natural gas fields.
Categorization and classification results from labeled data
sets to identify patterns are provided.

[0008] In accordance with an exemplary embodiment of
the claimed invention, data and analyses are displayed,
recommendations are transmitted, and actual field actions
and reactions are received on a graphical user interface on a
network-enabled processing device over the communica-
tions network. The recommendations are based on the
collected data of one or all available wells, or one or more
predicted conditions, communications with the one or more
of the field systems is automatic, self-driving, autopilot
and/or other autonomous means personalized to steer dis-
parate data simultaneously to operators working on vertical
and horizontal wells, hydraulic fractures, or other field
operations that are needed to improve future production
from wells in response to one or more detected trends. One
or more predicted conditions, or prescriptive recommenda-
tions are displayed on the graphical user interface connected
to the Petroleum Analytics Learning Machine system.
[0009] In accordance with an exemplary embodiment of
the claimed invention, the Petroleum Analytics Learning
Machine system utilizes an exploration and production
numerical synthesizer of available data from wells in an area
or play, in order to score and rank the combined Importance
Weights of attributes to predict maximum production at
minimum costs when convolved with specific attributes of
each well. A real-time synthesizer of the Petroleum Analyt-
ics Learning Machine system optimizes drilling to match a
designed pathway of a drilled well including hitting one or
more target landing zones, while minimizing sinuosity and
optimally completing the hydraulic fracturing of horizontal,
diagonal and/or vertical components of the drilled wells.
[0010] In accordance with an exemplary embodiment of
the claimed invention, a real-time processor of the Petro-
leum Analytics Learning Machine system convolves impor-
tance weight values of attributes received by the Petroleum
Analytics Learning Machine system from historical data and
attribute data from each new well as it progresses in real
time to predict future production of the new well before oil
and gas are delivered to the surface. The real-time processor
utilizes time-series attributes during each hydraulic fractur-
ing stage to automatically classity production effectiveness
of each hydraulic fracturing stage and to provide recom-
mendations by self-driving, autopilot and/or other autono-
mous means to maximize future production of each new
well. Preferably, the recommendations are directed to opti-
mization of the production of oil, natural gas, and natural gas
liquids while minimizing water production over time.
[0011] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid system and method
receives data from digital field devices into the system
integration database. The received data are combined with
real time exogenous data comprising weather forecasts. The
historical data and the real-time data are fed into a data
cleaning system to recognize a quality of the combination
with the received data from a comparison with historical
performance of at least one of each digital field device and
a data stream. The system integration database retrieves,
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compares and combines geology and geophysics, reservoir
modeling, rock properties, drilling, completion, hydraulic
fracturing, production and pipeline gathering data into a
uniform data repository by linking heterogeneous data
sources with normalization based on common unique iden-
tifiers. The common unique identifiers comprising at least
one of a well name, a well number, a region and geological
location of a well, a well depth, time, and a physical property
number or unique American Petroleum Institute (API) num-
ber, and the geology and geophysics, reservoir modeling,
rock properties, drilling, hydraulic fracturing, completion,
production, and pipeline gathering data.

[0012] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid system and method
determines clusters of like correlations in one or more well
conditions that will likely result in a productive well using
the Petroleum Analytics Learning Machine system. The
machine learning predicted production volumes of hydro-
carbon liquids, gases, and water are generated for each well
over time. Identified trends and predicted production con-
ditions are displayed. The Petroleum Analytics Learning
Machine system alerts an operator when an anomaly
between the predicted production conditions and observed
field conditions arise to modify an estimated ultimate recov-

ery.

[0013] In accordance with an exemplary embodiment of
the claimed invention, the Petroleum Analytics Learning
Machine system (PALM) has a coverage of multiple aspects
in the analytics. The PALM utilizes at least one of the
following regressions: linear regression, support vector
regression, classification, regression trees and random for-
ests. The PALM utilizes at one of the following classifica-
tion: logistic regression, support vector machine and support
vector regression, nearest neighbors, decision trees and
random forest, neural networks and deep learning networks.
The PALM utilizes at least one of the following clustering
methods: k-means, k-medoids, expectation-maximization,
agglomerative clustering, and nonparametric Bayesian mod-
els. The PALM utilizes at least one of the following feature
selection and feature engineering processes: information
gain, chi-square, principle component analysis, and filter
and wrapper feature selection methods. The PALM utilizes
at least one the following ensemble methods and models:
bagging, boosting, gradient boosting machine, and random
forests. The PALM utilizes at least one of the following time
series analyses: multivariate time series analysis, hidden
Markov models, nonparametric Bayesian models. The
PALM system utilizes at least one of the following large-
scale or big data analyses: autoregressive integrated moving
average (ARIMA), multivariate time series analysis, hidden
Markov models, nonparametric Bayesian models, autore-
gressive conditional heteroskedasticity (ARCH), exponen-
tially weighted moving average, and generalized autoregres-
sive conditional heteroskedasticity (GARCH). The PALM
utilizes at least one of the following large-scale or big data
analyses: Hadoop MapReduce, Spark, approximation, and
locality sensitivity hashing.

[0014] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid system and method
recommends a shut-in, cessation or abandonment of a well
in response to a determination by the Petroleum Analytics
Learning Machine system that anomalous conditions cannot
be economically corrected.
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[0015] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid system and method
receives at least one of historical exogenous data, real-time
exogenous data and the real-time endogenous data of said
each well over a secure wireless or wired network. The
historical exogenous data and the real-time exogenous data
include at least one of historical weather data, forecast
weather data, and production data from surrounding wells
under similar historical conditions; and computing forecast
of future product for said each well.

[0016] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid system and method
queries one or more system integration databases of multiple
surrounding wells in an area or querying one integrated
master system integration database comprising regionally
relevant geologic and geophysical data, reservoir models,
drilling data, hydraulic fracturing data, the historical exog-
enous data, the real-time exogenous data, and the real-time
endogenous data to forecast production of said each well.
[0017] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid exploration and pro-
duction synthesizer of the Petroleum Analytics Learning
Machine system independently computes at least one of the
following actions: steering of a new horizontal well within
a preferred geological landing zone target, planning and
execution of each stage and perforation density and spacing,
and a hydraulic fracturing design and sand proppant volume
over time that positively affects production decisions using
real-time decision trees and random forests during each
hydraulic fracture.

[0018] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid the exploration and
production synthesizer of the Petroleum Analytics Learning
Machine system utilizes a support vector regression to
estimate relative importance weights of attributes inputted
into the Petroleum Analytics Learning Machine system and
a linear regression to assign a positive or negative correla-
tion sign to product for each weight. The attributes com-
prise: relevant geological and geophysical data; reservoir
modeling results and calculations, including correction fac-
tors and assumptions; rock property measurements includ-
ing poisons ratio, young’s module, gamma ray radioactivity,
organic and British Thermal Unit (BTU) content; and com-
bining parameters of the support vector regression and linear
regression to enable construction of tornado diagrams rep-
resenting visually the importance weights of each attribute
that correlates with a positive production prediction result
and the importance weights of each attribute that correlates
with a negative production prediction result for all wells in
the area or play.

[0019] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid the real-time processor
convolves f and g, where f is the importance weight values
of attributes computed by the Petroleum Analytics Learning
Machine system from historical data from all the wells in the
area or play and g is each attribute value specific to a well
as it progresses. The f * g is an integral transform of a
product of two functions as attributes specific to said well,
and the integral transform predicts the future production of
said well before the oil and gas are delivered to the surface.
[0020] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid system and method
manages one or more prescriptive analytics calculations to
maximize production of liquids, and gases and to minimize
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production of water while minimizing the costs by the
exploration and production synthesizer. The aforesaid explo-
ration and production synthesizer computes multiple learn-
ing models operatively coupled to the system integration
database and receives collected data from the field in real
time in an exit poll like voting procedure by the Petroleum
Analytics Learning Machine system. The aforesaid system
and method generates at least one predicted condition by the
Petroleum Analytics Learning Machine system, and stores
resulting changes in operations in the system integration
database from field operations in response to a recom-
mended action.

[0021] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time synthesizer of
the Petroleum Analytics Learning Machine system indepen-
dently monitors drilling data. At least one of the following
surveys comprises the drilling data: measured depth, incli-
nation, azimuth, total vertical depth, vertical steering, azi-
muthal departure and dog-leg severity, build rate and turn. At
least one of the following parameters comprises the drilling
data: weight on bit, rotary torque, circulation rate, measure-
ment while drilling logs such as gamma ray, density and
electrical resistivity, differential pounds per square inch,
choke position, hook load, flow, alarm states, pump rates,
pump strokes, inclination, rotary revolutions per minute,
mud viscosity, mud weight, and deviation from a plan. At
least one of the following wellbore schematics comprises the
drilling data: conductor casing depth, water casing depth,
minimum casing depth, surface casing depth, production
casing depth, float subs, float collars, float shoes, marker
joints, cement design, mud displacement volume, additive
types, and additive volumes. In accordance with an exem-
plary embodiment of the claimed invention, the aforesaid
system and method provides real-time recommendations to
minimize sinuosity of horizontal wells while maintaining a
position within selected landing zones for predetermined
distances.

[0022] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
independently monitors the completions data. The comple-
tions data comprises perforation depths and time, comple-
tions tool use and choke setting. Also, the completions data
comprises at least one of the following: time series hydraulic
fracture data including surface and downhole pressures,
slurry compositions and water mixes, sand volumes, break-
down pressure, proppant concentrations and shut-in pressure
for each hydraulic fracture. The aforesaid system and
method optimizes a maximum possible production from one
or more hydraulic fracturing stages while minimizing its
costs by a real-time processing and generation of a predic-
tive machine learning model based on classification of the
key attributes determined by the Petroleum Analytics Learn-
ing Machine system. A time of a density drop that ends a first
sand injection is one of the key attributes. A pressure
percentile at the time of the first density drop is one of the
key attributes. A time of a density drop that ends a second
sand injection with sand larger in diameter and heavier than
the sand used in the first sand injection is one of the key
attributes. A pressure percentile at the time of the second
density drop is one of key attributes. A time of a pressure
drop at an end of a shut-in is one of the key attributes. A
pressure percentile at the time of the pressure drop at the
shut-in is one of the key attributes.
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[0023] A time of a beginning of a sand change from a
lighter to the heaviest sand is one of the key attributes. A
pressure percentile at beginning of a heaviest sand density
increase is one of the key attributes. A time of a highest
pressure after the sand change to the heaviest sand is one of
the key attributes. A pressure percentile of a maximum
heaviest sand change is one of the key attributes. A slope of
a linear regression of a pressure from beginning to end of the
heaviest sand injection is one of the key attributes. An
intercept of the linear regression of pressure from the
beginning of the heaviest sand injection to the highest
pressure at the end of the heaviest sand injection is one of the
key attributes. A scatter of the linear regression of the
pressure from the beginning of the heaviest sand injection to
the highest pressure at the end of the heaviest sand injection
is another of the key attributes.

[0024] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
generates one or more real-time executable recommenda-
tions to a hydraulic fracturing control center. The real-time
executable recommendations comprises at least one of the
following: a recommended down-hole pressure, a proppant
concentration, slurry rate and volume, and a water/sand mix
based on at least trends in one or more hydraulic fracturing
decision tree and random classifications of historical, highly
productive versus low producing stages.

[0025] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid system and method
generates one or more conditions to change real time deci-
sions in the hydraulic fracturing control center based on
updated decision trees and random forest predictions that
can steer in real time towards a high producing fracture
versus a low producing fracture stage.

[0026] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
executes automated time series classification using a
machine learning feature recognition to develop clusters of
hydraulic fracture classes. The aforesaid real-time processor
correlates stages of each class to an average highest pro-
duction of historical wells. The automated time series clas-
sification comprises multiple hydraulic fracture classifica-
tions. FracClass 1 is a failure to fracture due to surface
equipment failures resulting in no hydraulic fracture and no
input to a well production. FracClass 2 is a hydraulic
fracture but a subsequent equipment failure either on the
surface or down-hole results in a minimal sand displacement
and a hydraulic fracture is cut short by an operator, and a
current stage is cancelled and moves on to a next stage in the
well production plan. FracClass 3 is a successful fracture at
extended time and cost, a rapid sand injection results in the
well being accidentally packed-off to the surface by an
excessive sand buildup. A wellbore is cleanup with water
and re-perforated to allow a formation to take scheduled
proppant sands in FracClass 3. FracClass 4 is a successful
fracture and injection of a full planned for amount of sand,
but a late sand placement at an end of a proppant injection
results in a pressure surge. In FracClass 4, the heaviest sand
injection sand placement is only pack-off locally to a near
wellbore annulus of perforations of the current stage and a
subsequent water cleanout fails to washout the near wellbore
sand placement away from the annulus. FracClass 5 is a
perfect hydraulic fracture. In FracClass 5, the full planned
amount of the sand is emplaced in a scheduled time, and a
subsequent water wash successfully washes the sand from
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the drill pipe, but also unfortunately the formation in the
near wellbore, disrupting connectivity to the hydraulic frac-
ture proppants deeper into the formation.

[0027] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
performs the automated time series classification by discov-
ering sequential patterns and interactions among time series
variables utilizing at least one of the following: an autore-
gressive integrated moving average (ARIMA) model, a
multivariate time series analysis, a hidden Markov model, an
autoregressive conditional heteroskedasticity (ARCH)
model, an exponentially weighted moving average and a
generalized autoregressive conditional heteroskedasticity
(GARCH) model.

[0028] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
generates one or more executable recommendations to pro-
ceed to a productive hydraulic fracture class mixture based
on tornado diagrams utilizing the machine learning to match
clusters of attributes of the hydraulic fracture classes that
correlate with a maximum production. The aforesaid system
and method generates recommended actions to control the
hydraulic fracture classes or FracClasses 3 and 4 occur-
rences as a percentage of the hydraulic fracture class or
FracClass 5 of perfect factures. In accordance with an
exemplary embodiment of the claimed invention, the afore-
said system and method automatically updates the decision
trees to estimate limits of combination of the down-hole
pressure, the proppant concentration, the slurry volume and
rate, and a sand volume and size based on trends in one or
more historical hydraulic fracture successes and failures that
occur in each well stage-by-stage, and automatically convey
by self-driving, autopilot and/or other autonomous means
directions of future actions to the controller of hydraulic
fracturing.

[0029] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
stores the hydraulic fracture classes from each new well in
the system integration database, thereby enabling subse-
quent production of liquids, gas and water to be tested
against stored hydraulic fracture class mixtures, real-time
conditions, and performance measurements as fractures
unfold in real-time.

[0030] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
generates one or more hydraulic fracturing conditions that
minimizes ideal hydraulic fracturing conditions comprised
by at least reducing costs of a service company’s time and
energy. The aforesaid system and method determines a
proppant and water consumption and recommends a deci-
sion to proceed or stop said each hydraulic fracturing stage
because cost exceeds benefit.

[0031] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
comprises a memory to store computer-executable instruc-
tions. The aforesaid real-time processor is coupled to at least
one transmitter to communicate with the hydraulic fractur-
ing control center via a bi-directional messaging interface.
The aforesaid real-time processor executes the computer-
executable instructions to cause the hydraulic fracturing
control center (or Frac control center) to perform multiple
actions. The hydraulic fracturing control center receives
recommendations from the Petroleum Analytics Learning
Machine system. The Frac control center generates at least
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one recommendation to increase production or cut costs of
a well in progress by controlling a mix of the hydraulic
fracturing class outcome using decision trees of the Petro-
leum Analytics Learning Machine system to maximize an
overall ell production. The Frac control center stores data
from actions undertaken based on at least one recommen-
dation in the system integration database to provide a
feedback to the Petroleum Analytics Learning Machine
system about its recommendations based on the future
production.

[0032] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
computes a forecast for production of oil, natural gas, gas
liquids, and water for a duration of a profitable history of a
well, before delivery of the oil and gas to the surface. The
aforesaid real-time processor continuously monitors and
updates the production as the well ages. The aforesaid
real-time processor provides an estimated ultimate recovery
modification recommendations when a deviation from a
forecasted, estimated ultimate recovery is predicted.

[0033] In accordance with an exemplary embodiment of
the claimed invention, the aforesaid real-time processor
analyzes a pipeline gathering system that is monitoring data
from maintenance and “pigging” (self directed or flowing
cylinders of electronics that are pumped through the inside
of the pipeline to make measurements of corrosion, fractur-
ing, liquids and water buildup, and other unsafe conditions
within the pipeline) and storing it in the system integration
database. The monitoring data comprises at least one of the
following: time series of nodal pressure, liquids and gas
compositions and volumes, maintenance records; and the
PALM system identifies correlation clusters to predict opti-
mal pigging schedules and looping directions for highest
performance of a pipeline gathering system.

[0034] A composite tornado plot is then created for sea-
sons, wet versus dry and hot versus cold. Forecasting of
day-ahead and week-ahead pipeline gathering system capac-
ity leads to the identification of maintenance that will
prevent the need to shut-in wells because of excessive
gathering system capacity. Ranking by section of good to
bad performing pipeline sections allows forecasting of sus-
ceptibility to liquids trapping, actual versus planned pigging
success, witches hat problem events before they happen, and
condensate restrictions needed to reduce actual/predicted
production.

[0035] In accordance with an exemplary embodiment of
the claimed invention, the MAP subsystem further com-
prises an Efficient Frontier Portfolio application to quantify
outstanding cost/benefit that will then be calculated by the
PALM system. Control is multi-objective; that is, it must
optimize a combination of capital cost, reliability, opera-
tional cost, safety, as well as profitability, etc. The infra-
structure management has to accommodate market signals
that are stochastic and other exogenous variables that are
also stochastic such as weather and environmental concerns.
The state space for control is large, but handled by the
PALM machine learning in order to provide optimal cost
benefit control of the energy infrastructure of oil and gas
fields.

[0036] Various other objects, advantages and features of
the present invention will become readily apparent from the
ensuing detailed description, and the novel features will be
particularly pointed out in the appended claims.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0037] The present invention is further explained in the
description which follows with reference to the drawings,
illustrating, by way of non-limiting examples, various
embodiments of the invention, with like reference numerals
representing similar parts throughout the several views, and
wherein:

[0038] FIG. 1 is an illustration of a system overview of the
Petroleum Analytic Learning Machine (PALM) system in
accordance with an exemplary embodiment of the claimed
invention;

[0039] FIG. 2 is an illustration of the schematic flow of the
PALM system in accordance with an exemplary embodi-
ment of the claimed invention;

[0040] FIG. 3 is an illustration of the machine learning
optimizer system and machine learning tools common to all
MAP subsystems of the PALM system in accordance with an
exemplary embodiment of the claimed invention;

[0041] FIG. 4 is a schematic illustration of various data
from geology, geophysical, reservoir modeling, drilling,
completions including the hydraulic fractures, production,
pipeline gathering and exogenous systems that are integrated
into the System Integration Database, in accordance with an
exemplary embodiment of the claimed invention;

[0042] FIG. 5 is an illustration of the TotalVU dashboard
that visualizes a MAPGEORES Tornado Diagram of Impor-
tance Weights in accordance with an exemplary embodiment
of the claimed invention;

[0043] FIGS. 6A-B are illustrations of MAPFRAC auto-
mated classification of hydraulic fracturing data in accor-
dance with an exemplary embodiment of the claimed inven-
tion;

[0044] FIG. 7 is an illustration of a MAPFRAC result of
intentionally increasing the FracClass 4 hydraulic fracture
percentage per well in a drilling program in accordance with
an exemplary embodiment of the claimed invention;

[0045] FIG. 8 illustrates a Tornado Diagram of the Impor-
tance Weights of MAPFRAC hydraulic fracture attributes
that likely caused the production improvement in FIG. 7;

[0046] FIG. 9 illustrates a MACFRAC Decision Tree for
arriving at a FracClass 4 versus FracClass 5 result during the
hydraulic fracturing of successive stages of a horizontal
shale oil well in accordance with an exemplary embodiment
of the claimed invention;

[0047] FIG. 10 is illustration of the MAPPROD Tornado
Diagram of Importance Weights that predict oil, gas and
water production using all of the attributes available before
production of first oil to the surface in accordance with an
exemplary embodiment of the claimed invention;

[0048] FIGS. 11A-D illustrate the MAPPROD predictions
for oil, gas, and water production in accordance with an
exemplary embodiment of the claimed invention; and

[0049] FIG. 12 is an illustration of the MAPGATHER
optimizer for pipeline gathering systems performance
improvement, including compressor station maintenance
monitoring and “Pigging” scheduling of most needed flow
paths, in accordance with an exemplary embodiment of the
claimed invention.
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DETAILED DESCRIPTION OF THE
EMBODIMENTS

[0050] This application incorporates each of the following
application by reference in its entirety: U.S. Pat. No. 6,826,
483, U.S. Pat. No. 7,395,252, U.S. Pat. No. 8,036,996 B2,
and U.S. Pat. No. 8,560,476.

[0051] Turning to FIG. 1, there is illustrated a general
overview of the system incorporating the PALM 1000. In
accordance with an exemplary embodiment of the PALM
1000 comprises a processor 1100, a machine analytics
products (MAP) 1200 subsystems, as well as a System
Integration Database (SID) 1300, a Machine Learning Opti-
mizer 1400, and a TotalVU controller 1500 providing data
visualization.

[0052] As shown in FIG. 2, in accordance with an exem-
plary embodiment, the PALM system 1000 feeds data to and
archives analyses results from MAP 1200 subsystems,
including but not limited to: MAPGEORES 1210, MAP-
DRILL 1220, MAPFRAC 1230, MAPPROD 1240, MAP-
GATHER 1250 and MAPPORTFOLIO 1260. The PALM
Processor 1100 comprises a Machine Learning optimizer
that predicts future results and prescribes actions to improve
performance, and interacts with the operator via the TotalvVU
controller 1500 and its associated user interface.

[0053] In accordance with an exemplary embodiment of
the claimed invention, the MAPGEORES 1210 is a geo-
logic, geophysical, rock properties, and reservoir modeling
engine that scores the Importance Weights calculated by the
Machine Learning Optimizer 1400. Specifically, the predic-
tor 1410 and prescriptor 1420 of the Machine Learning
Optimize 1400 uses an ensemble of cluster and classification
analyses in order to predict maximum production before a
well is produced to the surface.

[0054] In accordance with an exemplary embodiment of
the claimed invention, the MAPDRILL 1200 is a real-time
drilling data integration engine that optimizes drilling to
match the designed pathway of the well including hitting
one or more landing zones, while minimizing sinuosity of
horizontal and non-vertical components of the drilled well.
[0055] In accordance with an exemplary embodiment of
the claimed invention, the MAPFRAC 1230 is a real-time
hydraulic fracture classifier used to control the class of
hydraulic fractures (FracClass) stage-by-stage, onsite or off.
MAPFRAC 1230 uses the FracClass classification system of
the claimed invention to predict the optimal mixture of
perfect fracture stages (not good for production if all stages
of'a horizontal lateral length are perfect, a surprise discovery
of the claimed invention), versus the class of frac’ s that
deliver late stage sand placement more effectively to the near
wellbore. Inventors discovered that more than 25% of these
imperfect frac’s out produced perfectly frac’ed wells in our
reduction-to-practice example. Other FracClasses identified
by the PALM system 1000 deal with the inevitable surface
and wellbore mechanical failures that occur in order to make
decisions when to abandon a costly frac to minimize losses.

[0056] In accordance with an exemplary embodiment of
the claimed invention, the MAPPROD 1240 is a production
forecaster that convolves the actual attribute values of
hundreds to thousands of attributes coming into the system
from historical wells, as well as each new well as it
progresses, to maximize production for all wells in a play.
The result, as controlled by the actions recommended by the
PALM 1100 processor, is the optimization of the production
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of oil, natural gas, and natural gas liquids while minimizing
water production (a cost) over time.

[0057] In accordance with an exemplary embodiment of
the claimed invention, the MAPGATHER 1250 integrates
the pipeline field data from gathering pipelines and produc-
tion facilities, a real-time system for optimizing mainte-
nance and pigging schedules, while minimizing liquids
dropout in order to maximize fluid and gas throughput of the
pipeline gathering system.

[0058] In accordance with an exemplary embodiment of
the claimed invention, the MAPPORTFOLIO 1260 manages
the efficient frontier of costs versus benefits for each well,
field, play or company, and the MAP ETC. 1270 is a
subsystem or an application engine specifically built to
address a particular situation or customized for a specific
customer’s need or requirement.

[0059] Turning now to FIG. 3, in accordance with an
exemplary embodiment, there are listed machine analytics
algorithms and tools commonly accessible to all MAP 1200
subsystems within the PALM 1000. The Machine Learning
Optimizer 1400 computes adaptive stochastic control,
locally sensitive hashing, and MapReduce parallelization in
Hadoop. Unstructured Analyses 1401 extract, retrieve and
mine information from text, perform entity and pattern
recognition, log-rank, perform keyword extraction, semantic
analysis, knowledge discovery, sentiment analysis and noisy
text processing. A Clustering Predictor 1410 computes
K-means, K-medoids, region growing, and non-parametric
modeling. A Regression Predictor 1411 computes linear and
support vector regression, and classification and regression
trees (CART). A Feature Selector 1412 computes and ranks
Importance Weights, Chi-square goodness of fit, Fischer
score probabilities, principal component analysis (PCA),
and contains various wrapper methods. An Ensemble Pre-
scriptor 1420 computes bagging, mountain climbing opti-
mization, boosting of aggregate classifiers, random forest
decision trees, and gradient boosters. A Classification Pre-
scriptor 1421 computes logistic regression, support vector
machines, K-Nearest neighbor, Decision tree modeling, and
Neural networks and Deep learning. A Time Series Prescrip-
tor 1422 computes Multivarieant time series, Hidden
Markov models, and non-parametric Bayesian models.
[0060] In accordance with an exemplary embodiment of
the claimed invention, as shown in FIG. 4, the system
integration database (SID) 1300 is the central data repository
for all data sources. The SID is a multi-architectural data
center that incorporates components of different database
technologies. One component is based on relational database
management system (DBMS), which is for the traditional
structured column based data management. The SID 1300
also features a NoSQL data management, which provides a
mechanism for storage and retrieval of data not only in
tabular relations. For example, textual data, such as PDFs,
image data such as frac’s, audio and video data can be
analyzed via the NoSQL architecture for storage, and effi-
cient retrieval. An example NoSQL database is MongoDB.
Another component of the SID 1300 is a distributed file
system. In the petroleum industry, terabytes of data are
generated every day, such as time series hydraulic fracture
data, well log and measurement-while-drilling data, and
sensor data that monitors production and delivery to pro-
cessing plants. How to store these data, and make use of
such large-scale data poses a challenge in this domain. A
distributed file system facilitates the storage and mainte-
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nance of the data, and provides efficient data computations
and analytics. For example, Hadoop is a framework that
allows for the distributed storage of data and distributed
processing of large data sets across clusters of computing
resources. A component of the SID 1300 makes use of
Hadoop distributed file system (HDFS) for data storage, and
MapReduce techniques for further data learning and com-
putation. The large-scale data analytics in oil and gas benefit
from the recent development of big-data technologies.
Hadoop ecosystem is a framework that is based on the
MapReduce algorithm for big data analytics. Hadoop dis-
tributed file system (HDFS) stores large-scale of data in a
distributed network across computing clusters. Data com-
putation is performed on each computing node in the Map
step, and an intermediate output is combined to perform a
global computation in the Reduce step. Among many com-
ponents in the Hadoop Echosystem that can be applied in the
oil and gas domain, Apache Hive is a data warehouse
infrastructure built on top of Hadoop for providing data
summarization, query, and analysis. The Apache Mahout
provides an environment for quickly creating scalable
machine learning applications.

[0061] Within the SID 1300, in accordance with an exem-
plary embodiment of the claimed invention, geology and
geophysical data 1310 include 2D, 3D & 4D seismic data
and interpretations such as the location and form of faults,
anticlines, synclines, fractures, stratigraphic features, inte-
grated well logs and areal maps. Rock property data include
landing zone targets, target interval, target height, thickness
of sequences, landing sequence type, gas shows, core analy-
ses, mudlogs. Well log and measurement-while-drilling log
analysis are included, such as structures, thickness, forma-
tion identification, normalized curve data, gamma ray, effec-
tive porosity, density, resistivity, TOC (total organic carbon),
water saturation, and gas in place data. Reservoir modeling
inputs and outputs are included.

[0062] Within the SID 1300, in accordance with an exem-
plary embodiment of the claimed invention, drilling data
1320 include surveys such as MD (measured depth), incli-
nation, azimuth, TVD (total vertical depth), VS (vertical
steering), departure north south east west, DLS (dog leg
severity), build, turn, parameters, such as WOB, ROP,
torque, circulation rate, gamma ray, differential PSI, choke
position, hook load, flow, alarm states, pump rates, pump
stokes, build rate, block height, tank volumes, over pull,
northing, easting, inclination, azimuth, rotary torque, trip
speed, tank fill, walk rate, resistivity, rotary RPM, mud
viscosity, mud weight, 3rd party gas, deviation from plan,
formation density, and wellbore schematics, such as con-
ductor casing depth, water casing depth, minimum casing
depth, surface casing depth, production casing depth, float
subs, float collars, float shoes, marker joints, cement design,
displacement volume, additives type, and additives volume
data.

[0063] Within the SID 1300, in accordance with an exem-
plary embodiment of the claimed invention, completions
data 1330 include structured digital data such as fracture
treatment, such as number of stages, landing zone for each
fracture stage, fracture gradient, breakdown pressure, break-
down rate, min/max treating rates, min/max treating PSI
(pounds per square Inch), ISIP (instantaneous shut-in pres-
sure), stage phases, such as start/end date & time, fluid type,
proppant density, slurry volume, cumulative slurry volume,
clean volume, cumulative clean volume, proppant volume,
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start/end rates, start/end pressures, additive type, additive
name, additive volume, and perforations, such as stage
number, top perforation, bottom perforation, TVD (total
vertical depth) of perforation, shot density SPF (shots per
foot), shots planned, actual number of shots, cluster size,
perforation diameter, phasing, charge size, penetration
depth, gun size, charge type data. Unstructured textual data
that the SID 1300 can incorporate includes mechanical tool
information, well completion logs and schematics, lists of
tool configurations put into wells for completion and pro-
duction, sales orders with part numbers, technical limits of
the tool string, and job logs (such as operator, data/time,
activity, remarks, job number, sold to, billed to, plant,
Purchase Order/Authorization For Expenditure number,
shipped to, description, address, details, well Identifier, etc.).
[0064] Within the SID 1300, in accordance with an exem-
plary embodiment of the claimed invention, production data
1340 include gas analysis, such as BTU calculation, deple-
tion (Z) factor, sample pressure, sample temperature, molar
component percent, GPM (gallons per minute) measure,
production estimates, such as daily gas, daily condensate,
daily water, daily casing pressure, daily tub pressure, daily
pad volume, condensate haul tickets, water haul tickets, tank
gauges—top, tank gauges—bottom, and SCADA (supervi-
sory control and data acquisition), such as gas rate, differ-
ential pressure, tubing pressure, casing pressure, ESD
(emergency shutdown) alarms, separator pressures, choke
position, LEL (lower explosive limit) readings, condensate
density, water density, tank gauges—top, tank gauges—
bottom, EBU Data, flash separation data, VRU (vapor
recovery unit) data, battery voltage data.

[0065] Within the SID 1300, in accordance with an exem-
plary embodiment of the claimed invention, pipeline gath-
ering data 1350 includes location, pipe size, topographical
height, and size configuration, fluid and gas composition,
and pigging history, as well as maintenance schedules, type,
time, place, and result of all previous incidence reports and
repair records by pipeline section and GPS location, com-
pressor station and equipment, pigging data acquisition,
liquids trapped by location and time, and all other relevant
remotely and locally gathered operational SCADA data.
[0066] Within the SID 1300, in accordance with an exem-
plary embodiment of the claimed invention, exogenous data
1360 include primarily weather history and future forecasts.
[0067] In accordance with an exemplary embodiment of
the claimed invention, the MAPGEORES 1210 computes
production forecasts entirely from geological, geophysical,
rock property and reservoir simulation data known before
the well is spudded. The tornado diagram of importance
weights calculated by MAPGEORES 1210 as exemplary
displayed by the TotalVU 1500 is shown in FIG. 5. The
calculated importance weights are used by the PALM 1000
to predict production accuracy in accordance with an exem-
plary embodiment of the claimed invention. Appendix 1 is
a list of attributes shown in FIG. 5 ranked by their impor-
tance weights calculated by MAPGEORES 1210 using
Support Vector Regression. The prediction of production of
oil, natural gas and water when Importance Weights were
convolved with the same labeled attributes specific to each
well were found to be 67% accurate using this initial set of
geology, geophysics, rock properties, and reservoir model-
ing attributes.

[0068] The MAPGEORES 1210 utilizes machine learning
of the historical structured data to compute Importance
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Weights for the attributes that represent all the data available
before spud. The machine learning algorithms of the MAP-
GEORES 1210 uniquely combine the parameters of support
vector and linear regression, allowing the construction of the
Tornado diagrams, as exemplary shown in FIG. 5, to rep-
resent the Importance Weights of each attribute that corre-
lates with a positive production prediction result (the bars to
the right) and the importance of negative weights of each
attribute that correlates with a positive production prediction
result (the bars to the left). The predicted production is then
compared to the actual production to derive an accuracy
score. The future production accuracy is approximately 67%
for the reduction-to practice shown in FIG. 5, whereas a
random forecasting would be accurate only 50% of the time.

[0069] In accordance with an exemplary embodiment of
the claimed invention, the MAPGEORES 1210 assembles a
wide array of unstructured textual and image data (such as
.pdf) to create additional attributes that are included in the
machine learned ranking of Importance Weights, forming
new attributes such as exemplary shown in Table 1.

TABLE 1

Procedure for Progressive Clustering with Learned
Seeds to Compute new Machine Learning Attributes

Tree path extraction

Path scoring

Class contribution calculation

Seed points retrieval

K-Means clustering using retrieved seeds

[N NV SR

[0070] In accordance with an exemplary embodiment of
the claimed invention, the MAPDRILL 1200 is a real-time
synthesizer of the data coming into the SID 1300 during the
drilling process, which can be 2000 or more data points each
second. The MAPDRILL 1200 optimizes the drilling to
match as closely as possible the designed pathway of the
well including hitting one or more landing zones, while
minimizing sinuosity of horizontal and non vertical compo-
nents of the drilled well. In accordance with an exemplary
embodiment of the claimed invention, the MAPDRILL 1200
minimizes the sinuosity of the horizontal component during
the drilling of wells by monitoring and prescribing latitude,
longitude and depth modifications to the inertial navigation
steering mechanism. The larger the amplitude of the sinu-
osity of the horizontal well, or how much it deviates from the
planned target path of the well, the more chances for liquids
to pool in the valleys of the wellbore, which often can block
the path of the liquids and gases to the surface. In accordance
with an aspect of the claimed invention, the drilling console
of'a modern horizontal drilling rig receives data transmitted
in near real-time from downhole, thereby allowing the driller
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to steer the horizontal well to prevent it from sinusoidal
spiraling which can cause oil to have difficulty drilling to the
surface.

[0071] In accordance with an exemplary embodiment of
the claimed invention, the automated classification of
hydraulic fracturing data by the MAPFRAC classifier 1230
to isolate a FracClass 4 hydraulic fracture, as illustrated in
FIG. 6A, that is struggling to inject the last of its heaviest
proppant, compared to a more “perfect” FracClass 5 frac that
did not inject enough of the heaviest sand and proppant to
cause the late pressure rise, as illustrated in FIG. 6B. The
inventors discovered that a mix of FracClass 4 and 5 is
required to produce a most productive well.

[0072] MAPFRAC classifier 1230 utilizes machine learn-
ing methods to classify the wells to be those with highest
production versus lowest production. Attributes for machine
learning include data sources in addition to geology, geo-
physics, rock properties, reservoir simulation, such as land-
ing zones, stress gradients and other hydraulic fracturing
attributes we invented such as FracClass completion classes.
The total oil, gas, condensate, and water production, and
their normalized production by flow days, normalized for
perforated lateral length, are used as response variables.
Classification methods such as logistic regression, naive
Bayes, support vector machine, decision trees (e.g. CART,
1D3, C4.5, CHAID), k-nearest neighbors, neural networks
and deep learning networks are used by the MAPFRAC
classifier 1230. Prediction accuracy, precision, and recall for
each class are metrics used by the PALM 1000 to evaluate
the production forecasting performance. Regression models
such as linear regression, support vector regression, classi-
fication and regression trees (CART) can be also used by the
MAPFRAC classifier 1230. R-Square, mean square error,
among others, can be used to evaluate the regression per-
formance. If a ranking is generated by the MAPFRAC
classifier 1230 where the top of the rank list are high
producing wells, and the bottom are low producing wells,
receiver operating characteristic (ROC) curves and area
under the ROC curve (AUC) are used to evaluate the ranking
performance.

[0073] In accordance with an exemplary embodiment of
the claimed invention, the ensemble methods that combine
multiple classifiers can be used by the PALM 1000 to
improve the overall robustness and reliability of the model.
These ensemble methods include Ada boost, random forest,
gradient boosting machine, and other bagging, and boosting
techniques. The MAPFRAC classifier 1230 executes a
unique automated time series classification schema using
machine learning feature recognition to develop clusters of
hydraulic fracture classes unique to the claimed invention,
and then correlates the abundance of stages of each class to
highest production of each well, as shown in Table 2.

TABLE 2

MAPFRAC Machine Learning Steps for FracClass Automated
Classification of Hydraulic Fractures as illustrated in FIG. 7

(1231) Automatically select time of the beginning of sand change to heaviest sand
proppant = timeheavysandstart.

(1232) Automatically select pressure percentile at beginning of heaviest sand density
increase = % pressureheavysandstart.

(1233) Automatically select time of the density drop at the end of the heaviest sand
injection = timedensitydropheavysandend.

(1234) Automatically select pressure percentile at the time of the end of the heaviest sand
injection = % pressuredropheavysandend.
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TABLE 2-continued

MAPFRAC Machine Learning Steps for FracClass Automated
Classification of Hydraulic Fractures as illustrated in FIG. 7

(1235)

(1236)

1237)

(1238)

(1239)

Automatically calculate the slope of the linear regression of the pressure from
beginning of heaviest sand injection to the end of the heaviest sand injection =
slopepressureheavysand.

Automatically calculate the intercept of the linear regression of the pressure at the
end pressure of the heaviest sand injection = Interceptpressureheavysand.
Automatically assign a FracClass for each Hydraulic Fracture based upon whether
the Slope (1235) at the Intercept (1236) is positive, wherewith the Hydraulic
Fracture is assigned a classification of 4, representing a struggle to inject the last
of the heaviest sand into the rock formation = FracClass 4, or

Automatically assign a FracClass for each Hydraulic Fracture based upon whether
the Slope (1235) at the Intercept (1236) is zero to negative, wherewith the
Hydraulic Fracture is assigned a classification of 5, representing no struggle to
insert the last of the heaviest sand into the formation = FracClass 5.
Automatically calculate a statistical root mean squared scatter of the linear
regression of the pressure from the beginning of heaviest sand injection to the
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highest pressure = rsquared.

[0074] The claimed invention has solved the problem of
not knowing what production comes from which hydraulic
fracture, stage-by-stage, by automating a classification
scheme that the MACFRAC classifier 1230 correlates with
high versus low production using at least 150 historical
wells and at least 2000 hydraulic fracture stages per play in
shale oil and gas basins around the world. FracClass 1 in the
claimed classification schema is an incomplete fracture
attempt that must be removed from the analysis dataset.
FracClass 2 fracs were either “Emergency Shut Downs”
(ESD) because of surface equipment failures, frac jobs cut
short for any surface reason such has lightning and bad
weather, or equipment shutdown (SD) that resulted in a full
job but not a successful frac. FracClass 3 fracs were suc-
cessful, but only after re-perforations that were required by
the sand sweep resulting in the whole wellbore being packed
off with sand. The most successful FracClass 4 fracs
occurred when more that one quarter of the stages in a
horizontal well resulted in late injection pressure rises at the
near wellbore due to struggles to place the full allotment of
late sand proppant.

[0075] A majority of FracClass 4 fracs correlated with
subsequent high well production, surprisingly. FracClass 4
fracs can be independently identified within the completions
data by the real-time processor, the completions data com-
prising time series hydraulic fracture data including surface
and downhole pressures, slurry compositions and water
mixes, sand volumes and proppant weights, breakdown
pressure, proppant concentrations and shut-in pressure for
each hydraulic fracture. A time of a density drop that ends
a first sand injection 1231 is one of the key attributes. A
pressure percentile at the time of the first density drop 1232
is also one of the key attributes. A time of a density drop that
ends a second sand injection with sand larger in diameter
and heavier than the sand used in the first sand injection is
one of the key attributes 1233. A pressure percentile at the
time of the second density drop is one of key attributes 1234.
A slope in the time of a pressure drop at an end of shut-in
is one of the key attributes. Automatic calculation of the
slope of the linear regression of the pressure from beginning
of heaviest sand injection to the end of the heaviest sand
injection at the end pressure of the heaviest sand injection
1235, and comparison to the end of the proppant injection
1236 ends the slope fit. Automatic assignment of a FracClass
for each Hydraulic Fracture is based upon whether the Slope

at the Intercept is positive 1237, wherewith the Hydraulic
Fracture is assigned a classification of FracClass 4, repre-
senting a struggle to inject the last of the heaviest sand into
the rock formation, or the Slope at the Intercept 1238 is zero
to negative, wherewith the Hydraulic Fracture is assigned a
classification of FracClass 5, representing no struggle to
insert the last of the heaviest sand into the formation.
[0076] Thatis, atime of a beginning of a sand change from
a lighter to the heaviest sand is one of the key attributes. A
pressure percentile at beginning of a heaviest sand density
increase is one of the key attributes. A time of a highest
pressure after the sand change to the heaviest sand is one of
the key attributes. A pressure percentile of a maximum
heaviest sand change is one of the key attributes. A slope of
a linear regression of a pressure from beginning to end of the
heaviest sand injection is one of the key attributes. An
intercept of the linear regression of pressure from the
beginning of the heaviest sand injection to the highest
pressure at the end of the heaviest sand injection is one of the
key attributes. The measure of scatter of the linear regression
of the pressure from the beginning of the heaviest sand
injection to the highest pressure at the end of the heaviest
sand injection from stage to stage is another of the key
attributes.

[0077] The MAPFRAC classifier 1230 discovered that
horizontal shale oil and gas wells with more than 75%
“textbook perfect” FracClass 5 hydraulic fracture stages
produce less oil and gas than wells with less than 75% of
FracClass 5 fracs and more abundance of FracClass 3 and 4
hydraulic fracture stages produce more oil and gas. The
MAPFRAC result of intentionally increasing the FracClass
4 hydraulic fracture percentage per well in a drilling pro-
gram in 2013 versus the preponderance of more “perfect”
FracClass 5 wells from the 2009-2012 drilling program is
exemplary shown in FIG. 7. In fact, the PALM 1000
predicted up to 320% improvement in oil production by
increasing the FracClass 4 hydraulic fractures. This discov-
ery was made in wells completed from 2009 through 2012,
as shown in FIG. 7, where there was an improvement from
the high cost perfect FracClass 5 dominated wells (diamonds
of group 1 inset), to the medium to low cost FracClass 3 and
4 dominated wells (circles and triangles of groups 2 and 3
respectively). The high cost label for Group 1 diamond wells
was because the hydraulic fractures cost the same, but the
production benefit was diminished when compared to the
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Group 2 medium cost circle wells and low cost triangle
wells. Average production for the 29 high cost wells was
2600 bbl/day, but 3500 bbl/day for 39 medium cost wells
and 3600 bbl/day for 28 low cost wells, as they produced
from 2009-2012. In 2013, a concerted effort was made to
drill a blind test of wells dominated by FracClass 3 and 4
hydraulic fracture stages (squares). Twenty wells produced
an average of 6150 bbl/day, for a production performance
improvement over the “perfect” wells of 225%.

[0078] FIG. 8 illustrates a Tornado Diagram of the Impor-
tance Weights of MAPFRAC hydraulic fracture attributes
that likely caused improvement in production for 2013 drill
program shown in FIG. 7. Appendix 2 is a glossary of the top
20 attributes in FIG. 8. In accordance with an exemplary
embodiment of the claimed invention, the MAPFRAC clas-
sifier 1230 identified improvements in production in 2013 by
Importance Weights; better drilling into the targeted, deeper
landing zone, a larger number of hydraulic fracture stages,
longer perforated lateral length of the horizontal wells, and
more total sand proppant injected into the formation during
hydraulic fracturing, in that order. The FracClass 4 (the more
the better) and FracClass 5 (the fewer the better) were
ranked 13th and 14th most Important Weights, indicating
they are dependent variables to the higher ranked indepen-
dent variables listed above plus shorter perforation cluster
and hydraulic fracture spacing used in 2013.

[0079] In accordance with an exemplary embodiment of
the claimed invention, as illustrated in FIG. 9, the steering
ot hydraulic fractures to the more advantageous FracClass 4
fracs can be controlled from the “Frac Control Center” in
real time using Random Forrest decision trees calculated by
the MAPFRAC classifier 1230, which recomputes the “yes/
no, if/then” branching of the tree every few seconds during
each new frac. The boxed paths in FIG. 9 predict how to
make a FracClass 4 instead of a FracClass 5 dominated oil
well mix, which produced a much higher volumes of oil in
FIG. 8.

[0080] As each hydraulic fracture proceeds from light
sand to heaviest sand proppant, first the slope of the pressure
is monitored. Successful FracClass 4 fracs can be obtained
whether the slope is equal to or less than 0.15, in which the
left branches (1249, 1247) of the Decision Tree become
critical, or the slope is greater than 0.15, in which the right
branches are critical. If the frac follows the rightmost
branches (1248) of FIG. 9, the percentage pressure drop
during injection of the heaviest sand proppant then becomes
critical. If the percentage is less than 48%, the tree branches
to the left (1247), and maximum pressure of the heavy sand
proppant injection must be kept less than 98%. A FracClass
4 will then have a 90% success rate. If the pressure increases
to more than 100% of what it has been, then the odds for a
FracClass 5 frac are greater than 80%. If the percentage
pressure drop is greater than 48% however, the rightmost
decision tree branches will be followed. Then the slope of
the pressure of heaviest sand proppant injection must be
maintained at <=40% in order to have an 80% chance of
developing a FracClass 4 frac.

[0081] If the slope of the initial pressure of the heaviest
sand proppant is less than 0.15, then there is a 2;1 chance
that the leftmost branches (1249) in FIG. 9 will be followed.
Then the percent pressure drop of the heaviest sand proppant
injection must be kept higher than 56% in order to be certain
of a FracClass 4 frac.
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[0082] FIG. 10 is illustration of the MAPPROD Tornado
Diagram of Importance Weights that predict oil, gas and
water production using all of the attributes available before
production of first oil to the surface in accordance with an
exemplary embodiment of the claimed invention. The
MADPPROD optimizer 1240 used 114 attributes available
from the SID 1300, which achieved a production accuracy
ot 97% using historical data. Appendix 3 is a glossary of the
184 structured attributes and many more unstructured attri-
butes used to select the 114 most important attributes for
predicting production.

[0083] In accordance with an exemplary embodiment of
the claimed invention, the MAPPROD optimizer 1240 uses
a Machine Learning optimizer to compute the Importance
Weights for the hundreds of multi-dimensional attributes
that represent all the data available at each time as the well
proceeds, from before spud, to after drilling and finally after
completion. In accordance with an aspect of the claimed
invention, Table 3 illustrates the Importance Weights of the
114 attributes in the reduction to practice study, combining
the data common to all analyzed wells from the system
integration database 1300, which contains 185 digitally
structured attributes and numerous unstructured textual attri-
butes defined in the glossary of Appendix 3. FIG. 10
illustrates the top 20 Importance Weights of Table 3. In
accordance with an exemplary embodiment of the claimed
invention, FIGS. 11A-C illustrate the Importance Weights of
the 114 attributes, when convolved with the specific attri-
butes of each well contributed to a Production Prediction for
Oil, Gas, and Water of 97% +/-2.7%.

TABLE 3

The Importance Weights of the 114 attributes
in the reduction to practice study.

Impor-

tance
Rank Attribute Weight
1 Landing Zone Majority Pct 2.77
2 Number of Stages 2.69
3 Reservoir Modeling Equation -2.35
4 FracLookback_Perforated Lateral Length 2.35
5 ReservoirModelingData Linear Flow Parameter -2.27
6 FracLookback Total Sand Per Well 2.11
7 TFracLookback BBLS Per ft 2.05
8 RockPropertiesAvg_ Permeability 1.95
9 TFracLookback Res Model Correction Factor 1.95
10 FracLookback_ Cluster Spacing -1.83
11 FracLookback Breakdown Pressure/ISIP -1.75
12 FracLookback_BTU -1.68
13 FracLookback Breakdown Pressure -1.55
14 ReservoirModelingData_ Fracture Spacing -1.51
15 FracLookback UpDip/DownDip 1.48
16 FracLookback_ISIP Instantaneous Shut In Pressure 1.48
17 StressGradientAvgByWell  MWD_ Gamma Ray 1.47
18 FracLookback_Sand Lbs Per Ft 1.44
19 FracLookback_Initial Production 1.44
20  StressGradientAvgByWell_ Youngs Modulus -1.43
21 RockPropertiesAvg_ Porosity 1.43
22 FracLookback Horizontal Well Azimuth 1.42
23 LandingPointFeatures_ Landing Zone Std 1.35
24 RockPropertiesAvg_ Temp_ Max -1.33
25 LandingPointFeatures_ Landing Zone Majority 1.28
26 LandingPointFeatures_ Landing Zone Average 1.27
27 RockPropertiesAvg_ Gas In Place -1.23
28 ReservoirModelingData_ Scaling Factor -1.21
29 ReservoirModelingDataArea Stimulated/Reservoir Vol -1.15
30 FracLookback_Frac Gradient 1.14
31 FracLookback_ Initial Production Per Cluster 1.13
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TABLE 3-continued
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TABLE 3-continued

The Importance Weights of the 114 attributes
in the reduction to practice study.

The Importance Weights of the 114 attributes
in the reduction to practice study.

Impor- Impor-
tance tance
Rank Attribute Weight Rank Attribute Weight
32 StressGradientAvgByWell_Base Measured Depth 1.08 102 FracLookback Max Pressure -0.02
33 StressGradientAvgByWell Measured Depth 1.08 103 StressGradientAvgByWell_ Latitude -0.02
34 StressGradientAvgByWell__Top Measured Depth 1.07 104  StressGradientAvgByWell_ Stress Grad 0.01
35 FracClassFeatures_ FracClass Std 0.99 105 RockPropertiesAvg_ Porosity/Resistivity -0.01
36 FracClassFeatures_ Has FracClass 4 Majority 0.98 106 ReservoirModelingData_ Perforated Lateral Length 0.00
37 FracLookback Has FracClass 5 Majority -0.95 107 LandingPointFeatures_ Is In Landing Zone I 0.00
38 RockPropertiesAvg  Water Saturation -0.90 108 LandingPointFeatures_ Is In Landing Zone III_¢ 0.00
39 ReservoirModelingData_ Net Pay Thickness -0.90 109 LandingPointFeatures_ Is In Landing Zone II_c¢ 0.00
40 RockPropertiesAvg_ Total Organic Carbon 0.86 110 LandingPointFeatures_ Is In Landing Zone I__¢ 0.00
41 RockPropertiesAvg_ Density -0.84 111 LandingPointFeatures_ Is In Landing Zone I_b 0.00
42 RockPropertiesAvg_ BTU 0.84 112 LandingPointFeatures_ Is In Landing Zone I_a 0.00
43 LandingPointFeatures_ Is In Landing Zone 1 -0.81 113 LandingPointFeatures_Is In Landing Zone IV 0.00
44 FracLookback AvgRate 0.81 114 FracLookback_ Fluid Pct Design 0.00
45 RockPropertiesAvg_ Pressure 0.79
46 ReservoirModelingData_ Number of Stages 0.77
47 RockPropertiesAvg  Vitronite Reflectance 0.75 [0084] In accordance with an exemplary embodiment of
ig EOCkPron/I[“zS?VgBC;m;Hﬁ Ray ‘8-28 the claimed invention, the MAPPROD optimizer 1240 con-
50 RZif;fg;eIfie: gﬁi ;grzsiwnLog —0.66 volves the Importance Weights for all wells in each study
51 ReservoirModelingData_Initial Gas Saturation _0.66 area f with g which is each attribute value specific to the well
52 RockPropertiesAvg Longitiude -0.66 for which future production of oil, gas and water is being
;31 itrefi?Gr;d}e?;AViBywill?Lﬁnggudez _ ‘8-22 calculated, wherein T * g is an integral transform of the
andingrointreatures__1s In lLanding Zone 11| . . . .
55 TracClassFeatures FracClass § Pet 057 product of the twq functions as attributes spemﬁc to that well
56 FracClassFeatures_ FracClass 4 Pct 0.57 under study. The integral transform then predicts the future
57 RockPropertiesAvg Youngs Modulus 0.57 production of the well under study before the oil and gas are
gg ?esei"oﬁ/bielg“gljl?t;fResert"gr Temperature ‘g-ig delivered to the surface and uses future production to
50 LichisgP oiftF;atr;iS Irs(}ipinm dizsglgznone I a _0' 47 calculate an accuracy of that initial forecast.
61 FracClassFeatures. FracClass 4 And Above Pet 0.45 [0085] FIGS. 11A-D illustrate the MAPPROD predictions
62 FracLookback Avg Pressure -0.44 for oil, gas, and water production using the dataset of 0 Root
2431 I;ifig%igifeggiggfvinliﬁdmg Zone II_b "g'ﬁ Mean Square accuracy varied from +/-2.7% for 114 attri-
o . T butes to +/-11% for 32 attributes. In accordance with an
65 RockPropertiesAvg_Avg Porosity 0.41 X ; ¢ :
66 LandingPointFeatures_Is In Landing Zone II_a 0.38 exemplary embodiment of the claimed invention, as shown
67 StressGradientAvgByWell_Total Vertical Depth/_Perf 0.38 in FIGS. 11A-C, the MAPPROD optimizer 1240 convolved
gg Is{ferPé"p;,I“er"%f]%fff et "8';2 the Importance weights using the 114 attributes in Table 3
essUradlentAv; (53 C] =0, . . . .
70 FracLookback h/%aXyProp;mt%onc 035 with the 156 wells in the reduction to practice dataset,
71 FracLookback BTU Attribute -0.35 resulting in production predictions for oil, gas and water that
72 RockPropertiesAvg_Measured Depth 0.31 were found to be 97% accurate compared to the initial
;i Is{ferPéOijer"%;gvvﬁ HPor,lzontall{a . ‘8?8 forecast. As shown in FIG. 11D, the Root Mean Square Error
essUradlentAv; ¢ll__roisons 10 . . .
75 chclaSSFeamref IZracclass Average ~0.29 (RMSE) of the predicted versus actual production forecasts
76 FracClassFeatures_ FracClass 3 Pct ~0.26 increased from +/-11% for 32 MAPGEORES attributes, to
77 RockPropertiesAvg Vitronite_Reflectance by Zone -0.26 9% for 45 MAPGEORES plus MAPDRILL attributes, to 7%
;g gzziggigzi*g;m \\/;)011 85451 for 62 MAPFRAC added attributes, to 6% when FracClass
80 FracClassFeatures Hlyas FracClass 2 094 attributes were added, and finally to 2.7% when all resulting
81 LandingPointFeatures_Is In Landing Zone II_c 0.24 attributes that were available before first oil was produced to
82 LandingPointFeatures_ Is In Landing Zone I -0.22 the surface.
83 ReservoirModelingData_ Corerection Factor -0.22 0086] A . . .
. . ; . s exemplary shown in FIG. 12, the pipeline
84 ReservoirModelingData_ EffectivePorosity -0.22 [ A 4 . . > -
85 LandingPointFeatures_Is In Landing Zone I_c 021 gathering system 1600 is critical tq dthf:r the production to
86 FracLookback Max Slurry Rate -0.19 market, the MAPGATHER analytic engine 1250 correlates
87 chmoigaci—water Lbs Per BBL 0.19 cause-and-eflect events between producing wells, produc-
gg ;r;f;sglrhzg daiggztirogfaintageéﬁnducﬁvity 8'}2 tion pads and pipeline gathering and compression station
90 FracLookback__Avg Sand Per Stage 0.16 events 1251 that might be mitigateq by preventi.ve mainte-
91 FracLookback Volume 100 Mesh -0.14 nance, day-ahead forecasts of available gathering system
gg f{mCClaS.Sll\:Aea;uI?S—DFraCCﬁSS Mall)onty il —8-3 capacity, and changes to loops that may be created within the
o Rzif;f;;elfie: :\2 ?i;dlnzﬁéinjﬁfsk;éz _0'09 gathering system to alleviate congestion and prevent choke
95 FracClassFeatures_FracClass 2 Pet ~0.09 points. This information can be conveyed automatically by
96 FracClassFeatures_ FracClass 3 Pct 0.08 self-driving, autopilot and/or other autonomous means to the
g; Erﬁciooigaci—?l}gﬂg Sand 30/50 8-82 controller for management of the pipeline gathering system.
racL.ookback__I'lul esign =0 . . . . .
99 FracClassFeatures_Frac Class Majority Pet ~0.06 [0087]. For compressor stations 1251 within the. plpel%ne
100 FracClassFeatures_ Has FracClass 4 0.03 gathering system 1600, the MACGATHER analytic engine
101 RockPropertiesAvg_ Latitude -0.02 1250 continuously analyzes clusters of correlation in com-

pressors, engines, and separator performances, and pre-
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scribes maintenance routines that need to be changed. In
accordance with an exemplary embodiment of the claimed
invention, the MAPGATHER analytic engine 1250 provides
an analytical solution that analytically analyzes the effects of
weather on incidence reports, day and night scheduling,
inspections, etc. and automatically conveys this information
by self-driving, autopilot and/or other autonomous means to
the controller for management of the pipeline gathering
system. The MAPGATHER analytic engine 1250 generates
a composite Tornado plot for seasons, wet versus dry and hot
versus cold. Forecasting of day-ahead and week-ahead pipe-
line gathering system capacity by the MAPGATHER sub-
ystem 1250 leads to the identification of maintenance that
will prevent the need to shut-in wells because of excessive
gathering system capacity. The MAPGATHER analytic
engine 1250 ranks section by section of good to bad per-
forming pipeline sections (by section) allows forecasting of
susceptibility to liquids trapping, actual versus planned
pigging success, witches hat problem events before they
happen, and condensate restrictions needed to reduce actual/
predicted production.

[0088] As exemplary shown in FIG. 12, the pipeline
gathering system 1600 may not be pigging optimally. In
accordance with an exemplary embodiment of the claimed
invention, the MAPGATHER analytic engine 1250 predicts,
and then prescribes better pigging schedules. For example,
the MAPGATHER analytic engine 1250, detects predictable
pressures that build up repeatedly at specific locations 1252
because of too much liquids accumulation in topographic
low points that are prescribed for higher levels of Pigging
surveillance. This information is automatically conveyed by
self-driving, autopilot and/or other autonomous means to the
controller for management of the pipeline pigging system.
[0089] In general, various omissions, modifications, sub-
stitutions and changes in the forms and details of the device
illustrated and in its operation can be made by those skilled
in the art without departing in any way from the spirit of the
present invention. Accordingly, the scope of the invention is
not limited to the foregoing specification, but instead is
given by the appended claims along with their full range of
equivalents.

Appendix 1: List of Attributes in FIG. 5, Ranked
by their Importance Weights Calculated by the
MAPGEORES Subsystem

[0090] 1. Permeability

[0091] 2. Average Pressure

[0092] 3. Log Porosity

[0093] 4. Linear Flow Parameter
[0094] 5. Reservoir Modeling Equation
[0095] 6. Effective Porosity

[0096] 7. Measured Depth

[0097] 8. Perforated Lateral Length

[0098] 9. Total Vertical Depth
[0099] 10. Poissons Ratio
[0100] 11. Total Organic Carbon
[0101] 12. British Thermal Units
[0102] 13. Reservoir Volume
[0103] 14. Average Depth
[0104] 15. Average Thickness
[0105] 16. Number of Stages
[0106] 17. Vitrinite Reflectance
[0107] 18. Perforation Length
[0108] 19. Water Saturation
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Appendix 2: Glossary of Top 20 Attributes in FIG.
7, Ranked by their Importance Weights Calculated
by the MAPPROD Optimizer

[0109] 1. Landing Zone Majority Pct=Highest percentage
geological formation that the majority of the horizontal
portion of the well landed in.

[0110] 2. Number of Stages=The number of Hydraulic
Fracture stages within the perforated lateral length of the
horizontal portion of the wells.

[0111] 3. Reservoir Modeling Equation=The fluid flow
equation used by the Reservoir Simulator.

[0112] 4. Perforated Lateral Length=Total length of the
horizontal portion of the well that was perforated.

[0113] 5. Linear Flow Parameter=Reservoir simulator
estimate of the linear flow parameter.

[0114] 6. Total Sand Per Well=Total sand proppant
injected into the formation for each Hydraulic Fracture by
stage.

[0115] 7. Barrels of Proppant/Slurry pumped per foot=per
Hydraulic Fracture stage.

[0116] 8. Rock Properties Avg Perm=Average Permeabil-
ity of the formation estimated from logs or measured from
sidewall cores.

[0117] 9. Reservoir Model Magic Correction Factor=Also
known as MagicFR, is a linear correction to the Fluid
Flow equation to scale it to the actual formation produc-
tion performance.

[0118] 10. Fracture Cluster Spacing=of all Hydraulic Frac-
ture stages per well.

[0119] 11. Breakdown Pressure to ISIP Ratio=Hydraulic
Fracture breakdown pressure divided by Instantaneous
Shut In Pressure after all treatments are completed.

[0120] 12. BTU Content of Formation=British Thermal
Units of combustible power of the hydrocarbons in the
formation.

[0121] 13. Fracture Breakdown Pressure=Pressure at
which the Hydraulic Fracture was initiated in the forma-
tion.

[0122] 14. Fracture Spacing=Estimated natural fracture
spacing used by the Reservoir simulator.

[0123] 15. Up Dip to Down Dip Ratio=of a sinuous
horizontal portion of the well.

[0124] 16. Fracture ISIP=Instantaneous Shut In Pressure
of the Hydraulic Fracture at the end of the treatment as
pressure is ramped down.

[0125] 17. Avg By Well MWD  Gamma
Ray=Measurement While Drilling average of the Gamma
Ray content of the formation in the horizontal portion of
the well.

[0126] 18. Proppant/Slurry Lbs Per Ft=Average Pounds
per foot of Proppant/Water Slurry on each hydraulic
Fracture stage.

[0127] 19. Initial Pressure from Fracture=At the initiation
of the hydraulic Fracture.

[0128] 20. Avg By Well YME=Average Young’s Modulus
estimated from well logs and rock property measurements
of cores and cuttings from the horizontal portion of the
well.

[0129] 21. Avg PHIE=Average Porosity from the resistiv-
ity log.
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APPENDIX 3-continued

Glossary of 184 Structured Attributes and List of More Unstructured
Attributes used by the MAPPROD Optimizer for Calculating
Importance Weights to Predict Future Production to 97% Accuracy

Glossary of 184 Structured Attributes and List of More Unstructured
Attributes used by the MAPPROD Optimizer for Calculating
Importance Weights to Predict Future Production to 97% Accuracy

Geology, Geophysics, Rock Properties, and Reservoir Simulation

Geology = British Thermal Units Target
Geology = Depth

Geophysics = Density

Geophysics = Gas In Place

Geology = Measured Depth Target

Geology = Net To Gross Pay

Geophysics = Permeability

Geophysics = Gamma_ Ray

Geophysics = Porosity

Geophysics = Resistivity

RockProperties = Poissons Ratio
RockProperties = Pore Pressure
RockProperties = Fluid Resistivity
RockProperties = Water Saturation
RockProperties = Temperature Max
RockProperties = Thickness

RockProperties = Total_Organic_ Carbon
RockProperties = Total Vertical Depth
RockProperties = Planned Horizontal Length
RockProperties = Latitude

RockProperties = Longitude

RockProperties = Youngs Modulus
ReservoirModeling = Stimulated Reservoir Volume
ReservoirModeling = Simulation Equation
ReservoirModeling = Fracture Conductivity
ReservoirModeling = Fracture Spacing
ReservoirModeling = Net Thickness
ReservoirModeling = Matrix Permeability
ReservoirModeling = Linear Flow Parameter
ReservoirModeling = Normalization Factor
ReservoirModeling = Perforated Lateral Length
ReservoirModeling = Effective Porosity
ReservoirModeling = Initial Gas Saturation
ReservoirModeling = Skin Thickness
ReservoirModeling = Planned Stages
ReservoirModeling = Reservoir Temperature
Drilling

Drilling = Hole Depth

Drilling = Rate Of Penetration

Drilling = Bit Depth

Drilling = Weight on Bit

Drilling = Total Pump Output

Drilling = Rotary Rotations Per Minute

Drilling = Rotary Torque

Drilling = Standpipe Pressure

Drilling = Logging While Drilling Gamma Ray
Drilling = 3”7 Party Gas

Drilling = Flow Rate

Drilling = Drilling Activity Report

Drilling = Differential Pressure

Drilling = Date and Time Report
LandingPointFeatures = Is In Landing Zone I
LandingPointFeatures = Is In Landing Zone II
LandingPointFeatures = Is In Landing Zone III
LandingPointFeatures = Is In Landing Zone I a
LandingPointFeatures = Is In Landing Zone I b
LandingPointFeatures = Is In Landing Zone I ¢
LandingPointFeatures = Is In Landing Zone II a
LandingPointFeatures = Is In Landing Zone II b
LandingPointFeatures = Is In Landing Zone II ¢
LandingPointFeatures = Is In Landing Zone III a
LandingPointFeatures = Is In Landing Zone III b
LandingPointFeatures = Is In Landing Zone III ¢
LandingPointFeatures = Is In Landing Zone III d
LandingPointFeatures = Is In Landing Zone III e
LandingPointFeatures = Zone Value Average
LandingPointFeatures_ = Zone Value Majority
LandingPointFeatures_ = Zone Value Majority Pct
Hydraulic Fracture Completions

FracClassFeatures = FracClassl Pct
FracClassFeatures = FracClass2 And Above Pct
FracClassFeatures = FracClass2 Pct
FracClassFeatures = FracClass3 And Above Pct
FracClassFeatures = FracClass 3 Pct
FracClassFeatures = FracClass 4 And Above Pct
FracClassFeatures = FracClass4 Pct
FracClassFeatures = FracClass5Pct
FracClassFeatures = FracClassAverage
FracClassFeatures = FracClassMajority
FracClassFeatures = FracClassMajorityPct
FracClassFeatures = FracClassStd
FracClassFeatures = Has FracClassl
FracClassFeatures = Has FracClass2
FracClassFeatures = Has FracClass3
FracClassFeatures = Has FracClass4
FracClassFeatures = Has FracClass5
StressGradientAvgByWell = BaseMD
StressGradientAvgByWell = Vertical Depth
StressGradientAvgByWell = Measured Depth
StressGradientAvgByWell = MWD_ Gamma
StressGradientAvgByWell = Pclgrad
StressGradientAvgByWell = PR_ ¢
StressGradientAvgByWell = TopMD
StressGradientAvgByWell = TVD_ Perf
StressGradientAvgByWell = X Latitude
StressGradientAvgByWell = Y Longitude
StressGradientAvgByWell = YME_ STA
Frac = Volume 100 Mesh Sand Proppant
Frac = Avg Pressure

Frac = Avg Rate

Frac = Avg Sand Per Stage

Frac = Azimuth

Frac = BBLS Per ft

Frac = BD Per ISIP

Frac = Breakdown Pressure

Frac = Breakdown Pressure To Avg Pressure
Frac = Breakdown Rate

Frac = BTU

Frac = BTU Attribute

Frac = Clean Volume

Frac = Cluster Spacing

Frac = Fluid Design

Frac = Fluid Pct Design

Frac = Frac Gradient

Frac = Initial Pressure

Frac = Perfs Per Cluster

Frac = ISIP Instantaneous Shut In Pressure
Frac = Large Proppant Design

Frac = Lateral Length

Frac = Lbs Per BBL

Frac = Lbs Per Ft

Frac = Fracture Ratio

Frac = Max Pressure

Frac = Max PropConcentration

Frac = Max Rate

Frac = Volume Sand 30/50

Frac = SlurryVol

Frac = Small Prop Design

Frac = Number of Stages

Frac = Total Sand Per Well

Frac = UpDip/DownDip

Production

Production = BTU Calculation

Production = Z-Factor

Production = Sample Pressure

Production = Sample Temperature

Production = Molar Component Percent

Production = GPM (Gallons Per Minute) Measure for Condensate
Production = GPM (Gallons Per Minute) Measure for Water
Production = MCF (Thousand Cubic Feet Per Minute) Measure for Gas
Production = Production Estimates Gas
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APPENDIX 3-continued

Glossary of 184 Structured Attributes and List of More Unstructured
Attributes used by the MAPPROD Optimizer for Calculating
Importance Weights to Predict Future Production to 97% Accuracy

Production = Production Estimates Condensate
Production = Production Estimates Water
Production = Daily Gas

Production = Daily Condensate

Production = Daily Water

Production = Daily Casing Pressure

Production = Daily Tubing Pressure

Production = Daily Pad Volume

Production = Condensate Haul Tickets

Production = Water Haul Tickets

Production = Pad Tank Gauges—Top

Production = Pad Tank Gauges—Bottom
Production = Differential Pressure

Production = ESD (Emergency Shut Down) Alarms
Production = Separator Pressures

Production = Choke Position

Production = LEL (Lower Explosive Limit) Readings
Production = Condensate Density

Production = Water Density

Production = Flash Separation Data

Production = VRU (Vapor Recovery Unit) Data
Production = Battery Voltage data

Production = Other SCADA (Supervisory Control And Data Acquisition)
Pipelines

Pipeline = Pipe Size

Pipeline = Topographical Height

Pipeline = Size Configuration

Pipeline = Fluid and gas composition
Pipeline = Pigging data acquisition
Pipeline = Pigging history

Pipeline = Pigging maintenance schedules
Pipeline = Pigging maintenance type
Pipeline = Pigging maintenance time
Pipeline = Pigging maintenance place
Pipeline = Liquids trapped by location and time
Pipeline = Incidence reports

Pipeline = Repair records

Pipeline = GPS location for each pipeline section
Pipeline = Compressor stations

Pipeline = Pressure

Pipeline = Equipment

Pipeline = Engines

Pipeline = Separators

Pipeline = Compressor station tank level
Pipeline = Other SCADA data

Additional Unstructured Textual Data

Mechanical tool information

Well completion log and schematics (est. start, customer, well,

sub-PSL, job BOM, sales order, job status, assigned, archived)
Mechanical well files that describe what was put in the wellbore to
mechanically complete the well and at what depth were these tools placed
Sales order that connect to details and part numbers

Part numbers connect to technical limits of tools

Job log (operator, data/time, activity, remarks, job number,

primary BOM, sold to, bill to, plant, Purchase Order/Authorization

For Expenditure, ship to, description, address, details, well ID, etc.)

1. A method for optimizing exploration, production and
gathering from at least one well of oil and natural gas fields
using a petroleum analytics learning machine system to
maximize production while minimizing costs, comprising
the steps of:

collecting structured digital data and unstructured textual

data from geological, geophysical, reservoir modeling,
drilling, completion and production of crude oil, natural
gas, ethane, butane, propane and condensate;
receiving incoming data over a communications network
and storing the incoming data into a system integration

14

Dec. 21, 2017

database by a processor based server or cloud based
distribution of servers to provide collected data, the
incoming data comprises digital exogenous data, real-
time and historical endogenous data, historical data
from surrounding production wells, hydraulic fracture
completion data, and progress, status and maintenance
data from new vertical and horizontal wells, including
kickoffs, sidetracks, step-outs, pipeline gathering sys-
tems, compressor stations, and oil and gas sensor data
including from public and private data sources;

recording a time and depth for each data point of the
collected data;

cleaning the collected data to eliminate extraneous and
noisy data;
normalizing and storing the clean data;

processing the normalized data to determine clusters of
correlation in multi-dimensional space to identify a
machine learned ranking of importance weights for
each attribute;

ranking said importance weights, and identifying patterns
to enhance production of said at least one well of oil
and natural gas fields;

performing predictive and prescriptive optimization on
the normalized data utilizing unique combinations of
machine learning and statistical algorithm ensembles,
including at least two of the following: linear and
non-linear support vector machines and regressions,
decision trees, hidden Markov models, random forests,
neural networks, deep learning networks, bagging,
boosting, feature selection, clustering, approximate and
dynamic programming;

classifying unstructured textual data to correlate with
optimal production by utilizing progressive clustering
with learned seeds, information extraction and
retrieval, image recognition, textual mining, keyword
and keyphrase extraction, semantic and sentiment
analysis, entity and pattern recognition and knowledge
discovery processing to capture the dynamics of said at
least one or more wells of 0il and natural gas fields and
provide categorization results from labeled data sets to
identify patterns;

displaying data and analyses, transmitting recommenda-
tions, and receiving actual field actions and reactions
on a graphical user interface on a network-enabled
processing device over the communications network,
the recommendations being based on the collected data
of one or more wells, or one or more predicted condi-
tions, communications with the one or more of the field
systems is autonomous and personalized to steer dis-
parate data simultaneously to operators working on
vertical and horizontal wells, hydraulic fractures, or
other field operations that are needed to improve future
production from of a well in response to one or more
trends, said one or more predicted conditions, or rec-
ommendations displayed on the graphical user inter-
face connected to the petroleum analytics learning
machine system; and

wherein the petroleum analytics learning machine system
utilizes:

an exploration and production synthesizer of available
data from wells in an area or play, in order to score
and rank the combined importance weights of attri-
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butes to predict maximum production at minimum
costs when convolved with specific attributes of each
well;

a real-time synthesizer to optimize drilling to match a
designed pathway of a drilled well including hitting
one or more target landing zones, while minimizing
sinuosity and missed targeting of horizontal, diago-
nal and vertical components of the drilled wells;

a real-time processor to:
convolve importance weight values of attributes

received by the petroleum analytics learning
machine system from historical data and attribute
data from each new well as it progresses in real
time to predict future production of said each new
well before oil and gas are delivered to the sur-
face; and
to utilize time-series attributes during each hydraulic
fracturing stage to automatically classify produc-
tion effectiveness of said each hydraulic fracturing
stage and provide recommendations to maximize
future production of said each new well; and
wherein the recommendations are directed autono-
mously to optimize the production of oil, natural gas,
and natural gas liquids while minimizing water pro-
duction over time.

2. The method of claim 1, further comprising the steps of
receiving data from digital field devices into the system
integration database; combining the received data with real
time exogenous data comprising weather forecasts; feeding
the historical data and the real-time data into a data cleaning
system to recognize a quality of the combination with the
received data from a comparison with historical perfor-
mance of at least one of each digital field device and a data
stream; and wherein the system integration database
retrieves, compares and combines geology and geophysics,
reservoir modeling, rock properties, drilling, completion,
hydraulic fracturing, production and pipeline gathering data
into a uniform data repository by linking heterogeneous data
sources with normalization based on common unique iden-
tifiers, the common unique identifiers comprising at least
one of a well name, a well number, a region and geological
location of a well, a well depth, time, and a physical property
number or API number, and the geology and geophysics,
reservoir modeling, rock properties, drilling, hydraulic frac-
turing, completion, production, and pipeline gathering data.

3. The method of claim 1, further comprising the steps of:

determining clusters of like correlations in one or more

well conditions that will likely result in a productive
well using the petroleum analytics learning machine
system,

generating from machine learning predicted production

volumes of hydrocarbon liquids, gases, and water for

each well over time;

displaying identified trends and predicted production con-

ditions;

alerting an operator when an anomaly between the pre-

dicted production conditions and observed field condi-

tions arise to modify and report a modification of an
estimated ultimate recovery from the petroleum ana-

Iytics learning machine system; and

wherein the petroleum analytics learning machine system

has a coverage of multiple aspects in the analytics,

including:
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at least one of the following regressions: linear regres-
sion, support vector regression, classification,
regression trees and random forests;

at one of the following classification: logistic regres-
sion, support vector machine and support vector
regression, nearest neighbors, decision trees and
random forest, neural networks and deep learning
networks;

at least one of the following clustering methods:
k-means, k-medoids, expectation-maximization,
agglomerative clustering, and nonparametric Bayes-
ian models;

at least one of the following feature selection and
feature engineering processes: information gain, chi-
square, principle component analysis, and filter and
wrapper feature selection methods;

at least one the following ensemble methods and mod-
els: bagging, boosting, gradient boosting machine,
and random forests;

at least one of the following time series analyses:
autoregressive integrated moving average (ARIMA),
generalized autoregressive conditional heteroskedas-
ticity (GARCH), multivariate time series analysis,
hidden Markov models, nonparametric Bayesian
models; and

at least one of the following large-scale or big data
analyses: MapReduce, approximation, and locality
sensitivity hashing.

4. The method of claim 3, further comprising the step of
recommending a shut-in, cessation or abandonment of a well
in response to a determination by the petroleum analytics
learning machine system that anomalous conditions cannot
be economically corrected.

5. The method of claim 1, further comprising the steps of
receiving at least one of historical exogenous data, real-time
exogenous data and the real-time endogenous data of said
each well over a secure wireless or wired network, and
wherein the historical exogenous data and the real-time
exogenous data include at least one of historical weather
data, forecast weather data, and production data from sur-
rounding wells under similar historical conditions; and com-
puting forecast of future product for said each well.

6. The method of claim 5, further comprising querying
one or more system integration databases of multiple sur-
rounding wells in an area or querying one integrated master
system integration database comprising regionally relevant
geologic and geophysical data, reservoir models, drilling
data, hydraulic fracturing data, the historical exogenous
data, the real-time exogenous data, and the real-time endog-
enous data to forecast production of said each well.

7. The method of claim 1, wherein the exploration and
production synthesizer of the petroleum analytics learning
machine system independently computes at least one of the
following actions: steering of a new horizontal well within
a preferred geological landing zone target, planning and
execution of each stage and perforation density and spacing,
and a hydraulic fracturing design and sand proppant volume
over time that positively affects production decisions using
real-time decision trees and random forests during each
hydraulic fracture.

8. The method of claim 7, wherein the exploration and
production synthesizer of the petroleum analytics learning
machine system utilizes a support vector regression to
estimate relative importance weights of attributes inputted
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into the petroleum analytics learning machine system and a
linear regression to assign a positive or negative correlation
sign to product for each weight; and wherein the attributes
comprise:

relevant geological and geophysical data;

reservoir modeling results and calculations, including

correction factors and assumptions;
rock property measurements including poisons ratio,
young’s module, gamma ray radioactivity, organic and
BTU content; and

combining parameters of the support vector regression
and linear regression to enable construction of tornado
diagrams representing visually the importance weights
of each attribute that correlates with a positive produc-
tion prediction result and the importance weights of
each attribute that correlates with a negative production
prediction result for all wells in the area or play.

9. The method of claim 8, wherein the real-time processor
convolves f and g, where f is the importance weight values
of attributes computed by the petroleum analytics learning
machine system from historical data from all the wells in the
area or play and g is each attribute value specific to a well
as it progresses; and wherein f * g is an integral transform
of a product of two functions as attributes specific to said
well, and the integral transform predicts the future produc-
tion of said well before the oil and gas are delivered to the
surface.

10. The method of claim 7, further comprising step of
managing one or more prescriptive analytics calculations to
maximize production of liquids, and gases and to minimize
production of water while minimizing the costs by the
exploration and production synthesizer by: computing mul-
tiple learning models operatively coupled to the system
integration database and receiving collected data from the
field in real time in an exit poll like voting procedure by the
petroleum analytics learning machine system; generating at
least one predicted condition by the petroleum analytics
learning machine system; and storing resulting changes in
operations in the system integration database from field
operations in response to a recommended action.

11. The method of claim 1, wherein the real-time synthe-
sizer of the petroleum analytics learning machine system
independently monitors drilling data comprising the follow-
ing:

at least one of the following surveys: measured depth,

inclination, azimuth, total vertical depth, vertical steer-
ing, azimuthal departure and dog-leg severity, build
rate and turn;

at least one of the following parameters: weight on bit,

rotary torque, circulation rate, measurement while drill-
ing logs such as gamma ray, density and electrical
resistivity, differential pounds per square inch, choke
position, hook load, flow, alarm states, pump rates,
pump strokes, inclination, rotary revolutions per min-
ute, mud viscosity, mud weight, and deviation from a
plan;

at least one of the following wellbore schematics: con-

ductor casing depth, water casing depth, minimum
casing depth, surface casing depth, production casing
depth, float subs, float collars, float shoes, marker
joints, cement design, mud displacement volume, addi-
tive types, and additive volumes; and

further comprises the step of providing real-time recom-

mendations to minimize sinuosity of horizontal wells
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while maintaining a position within selected landing
zones for predetermined distances.

12. The method of claim 1, further comprising the steps
of:

independently monitoring the completions data by the
real-time processor, the completions data comprising
perforation depths and time, completions tool use and
choke setting, and at least one of the following: time
series hydraulic fracture data including surface and
downhole pressures, slurry compositions and water
mixes, sand volumes, breakdown pressure, proppant
concentrations and shut-in pressure for each hydraulic
fracture;

optimizing a maximum possible production from one or
more hydraulic fracturing stages while minimizing its
costs by a real-time processing and generation of a
predictive machine learning model based on classifi-
cation of following key attributes determined by the
petroleum analytics learning machine system: a time of
a density drop that ends a first sand injection; a pressure
percentile at the time of the first density drop; a time of
a density drop that ends a second sand injection with
sand heavier than the sand used in the first sand
injection; a pressure percentile at the time of the second
density drop; a time of a pressure drop at an end of a
shut-in; a pressure percentile at the time of the pressure
drop at the shut-in; a time of a beginning of a sand
change from a light to a heaviest sand; a pressure
percentile at beginning of a heaviest sand density
increase; a time of a highest pressure after the sand
change to the heaviest sand; a pressure percentile of a
maximum heaviest sand change; a slope of a linear
regression of a pressure from beginning to end of the
second sand injection; an intercept of the linear regres-
sion of pressure from the beginning of the second sand
injection to the highest pressure; a scatter of the linear
regression of the pressure from the beginning of the
second sand injection to the highest pressure;

generating one or more real-time executable recommen-
dations to a hydraulic fracturing control center by the
real-time processor, the real-time executable recom-
mendations comprising at least one of the following: a
recommended down-hole pressure, a proppant concen-
tration, slurry rate and volume, and a water/sand mix
based on at least trends in one or more hydraulic
fracturing decision tree and random classifications of
historical, highly productive versus low producing
stages; and

generating one or more conditions to change real time
decisions in the hydraulic fracturing control center
based on updated decision trees and random forest
predictions that can steer in real time towards a high
producing fracture versus a low producing fracture
stage.

13. The method of claim 12, further comprising the step
of executing automated time series classification by the
real-time processor using a machine learning feature recog-
nition to develop clusters of hydraulic fracture classes, and
to correlate stages of each class to an average highest
production of historical wells, the automated time series
classification comprising the following hydraulic fracture
classifications:
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FracClass 1 is a failure to fracture due to surface equip-
ment failures resulting in no hydraulic fracture and no
input to a well production;

FracClass 2 is a hydraulic fracture but a subsequent
equipment failure either on the surface or down-hole
resulting in a minimal sand displacement and an opera-
tor decision to cut a hydraulic fracture short, and cancel
a current stage and move on to a next stage in the well
production plan;

FracClass 3 is a successful fracture at extended time and
cost, a rapid sand injection resulting in the well being
accidentally packed-off to the surface by an excessive
sand buildup, then a wellbore cleanup with water, and
re-perforation to allow a formation to take scheduled
proppant sands;

FracClass 4 is a successful fracture and injection of a full
planned for amount of sand, but a late sand placement
at an end of a proppant injection resulting in a pressure
surge, the sand placement only packing-off locally to a
near wellbore annulus of perforations of the current
stage, and a subsequent water cleanout failing to wash-
out the near wellbore sand placement away from the
annulus; and

FracClass 5 is a perfect hydraulic fracture wherein the full
planned amount of the sand was emplaced in a sched-
uled time, and a subsequent water wash successfully
washed the sand from the drill pipe and the near
wellbore; and

wherein the real-time processor performs the automated
time series classification by modeling sequential pat-
terns and interactions among time series variables
utilizing at least one of the following: autoregressive
integrated moving average (ARIMA), a multivariate
time series analysis, a hidden Markov model, an autore-
gressive conditional heteroskedasticity (ARCH), an
exponentially weighted moving average and a gener-
alized autoregressive conditional heteroskedasticity
(GARCH).

14. The method of claim 13, further comprising the steps
of generating one or more executable recommendations to
proceed to a productive hydraulic fracture class mixture
based on tornado diagrams by the real-time processor uti-
lizing the machine learning to match clusters of attributes of
the hydraulic fracture classes that correlate with a maximum
production; generating recommended actions to control the
FracClasses 3 and 4 occurrences as a percentage of the
FracClass 5 of perfect factures; and automatically updating
the decision trees to estimate limits of combination of the
down-hole pressure, the proppant concentration, the slurry
volume and rate, and a sand volume and size based on trends
in one or more historical hydraulic fracture successes and
failures that occur in each well stage-by-stage and conveyed
automatically and autonomously to the hydraulic fracturing
control center.

15. The method of claim 12, further comprising the step
of storing the hydraulic fracture classes from each new well
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in the system integration database by the real-time proces-
sor, thereby enabling subsequent production of liquids, gas
and water to be tested against stored hydraulic fracture class
mixtures, real-time conditions, and performance measure-
ments as fractures unfold in real-time.

16. The method of claim 12, further comprising the step
of generating one or more hydraulic fracturing conditions by
the real-time processor of the petroleum analytics learning
machine system that minimizes ideal hydraulic fracturing
conditions comprised by at least reducing costs of a service
company’s time and energy, and determining a water con-
sumption and decision to proceed or stop said each hydraulic
fracturing stage.

17. The method of claim 12, wherein the real-time pro-
cessor comprises a memory to store computer-executable
instructions and is coupled to at least one transmitter to
communicate with the hydraulic fracturing control center via
a bi-directional messaging interface; and further comprising
the step of executing the computer-executable instructions
by the real-time processor to cause the hydraulic fracturing
control center to:

receive recommendations from the petroleum analytics

learning machine system;

generate at least one recommendation to increase produc-

tion or cut costs of a well in progress by controlling a
mix of the hydraulic fracturing class outcome using
decision trees of the petroleum analytics learning
machine system to maximize an overall ell production;
and

store data from actions undertaken based on said at least

one recommendation in the system integration database
to provide a feedback to the petroleum analytics learn-
ing machine system about its recommendations based
on the future production.

18. The method of claim 1, further comprising the steps
of computing a forecast for production of oil, natural gas,
gas liquids, and water by the real-time processor of the
petroleum analytics learning machine system for a duration
of a productive history of a well, before delivery of the oil
and gas to the surface; continuously monitoring and updat-
ing the production as the well ages by the real-time proces-
sor; and providing an estimated ultimate recovery modifi-
cation recommendations by the real-time processor when a
deviation from a forecasted, estimated ultimate recovery is
predicted.

19. The method of claim 1, further comprising the steps
of analyzing a pipeline gathering system monitoring data
from the system integration database by the real-time pro-
cessor of the petroleum analytics learning machine system,
the monitoring data comprises at least one of the following:
time series of nodal pressure, liquids and gas compositions
and volumes, maintenance records; and identifying correla-
tion clusters to predict pigging schedules and looping direc-
tions for an optimal performance of a pipeline gathering
system.



